giovedì 19 ottobre 2017

RIFLESSIONE , INTERFERENZA e ONDE STAZIONARIE

RIFLESSIONE DELL'ONDA
https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_it.html
L'onda riflessa sull'estremità fissa risulta ribaltata per la terza legge della dinamica. 
Se la seconda estremità è libera di muoversi l'onda riflessa non è più ribaltata. Puoi provare con l'Applet sopra.
onda riflessa con estremità fissa
onda riflessa con estremità libera

INTERFERENZA : quando due onde si "incontrano" si sommano algebricamente e proseguono inalterate (stessa ampiezza, stessa frequenza , stessa velocità). Questo è un tipico comportamento ondulatorio ben diverso da quello corpuscolare : due particelle dopo lo scontro cambiano il loro moto.
interferenza costruttiva d'impulsi
interferenza di onde
interferenza distruttiva d'impulsi
esperimento per verificare l'interferenza di onde trasversali


ONDE STAZIONARIE: sono generate dall'interferenza tra l'onda generata e l'onda riflessa. Solo per alcune particolari frequenze (frequenze armoniche) l'onda appare ferma (l'energia rimane "stazionaria" in determinate zone dette VENTRI) L'onda stazionaria è anche caratterizzata da punti fermi detti nodi.

esperimento di onde stazionarie su una corda tesa
Queste configurazioni si ottengono solo per determinate frequenze dette frequenze armoniche. La prima armonica (detta anche FONDAMENTALE) è quella con un solo ventre e 2 nodi (le estremità). La sua lunghezza d'onda è il doppio della lunghezza della corda (lo si vede graficamente) 𝜆=2L e la frequenza è data da v=𝜆f e f₁=v/𝜆=v/2L.
La seconda armonica è formata da due ventri e tre nodi. Allora : 𝜆=L e f₂=v/L=2f₁
In generale le armoniche hanno frequenze multiple della fondamentale. fₙ=nf₁
Questo è uno dei pochi esempi di grandezze discrete della fisica classica.
ONDE STAZIONARIE SONORE IN UN TUBO
1° CASO : tubo aperto ad entrambe le estremità

Sia L la lunghezza del tubo. Alle estremità aperte vi saranno sicuramente dei ventri. La prima armonica è caratterizzata da un nodo centrale. 𝜆=2L e quindi f=v/2L
Per n=2 ho due nodi e 𝜆=L allora f=v/L =2f₁
2° CASO : tubo chiuso ad un'estremità
La parte chiusa è un nodo. La prima armonica è formata da un nodo e un ventre: L=𝜆/4 e 𝜆=4L  e f₁=v/4L
La seconda armonica: L=(3/4)𝜆 e quindi 𝜆=(4/3)L e f₂=(3v/4)L=3f₁
Le armoniche sono multipli dispari della fondamentale.

ANALISI ALGEBRICA:
Data l'onda generata e l'onda riflessa con equazioni:
l'interferenza è data dalla somma algebrica delle equazioni:
ricordando le formule di prostaferesi del seno:
si ottiene:
e quindi:
In questa equazione lo spazio e il tempo risultano separati: significa che l'onda è ferma. Fissato un punto P della corda di ascissa x questo oscilla con ampiezza : 
i nodi sono quelli con ampiezza nulla cioè :

 Ad esempio x=0 solo se lo sfasamento vale :

Nessun commento:

Posta un commento